MATH 2050 - Limit of functions
(Reference: Bartle \&4.1)
GOAL: Define $\lim _{x \rightarrow c} f(x)^{\text {B }}$ for functions $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$
We shall only define $\lim _{x \rightarrow C} f(x)$ for those " C "'s which are "cluster point" of A.

IDEA: $f(x) \stackrel{\varepsilon}{\approx} L$ when $x \stackrel{\delta}{\approx} c$ and $\tilde{x \in A}$
Def": Let $A \subseteq \mathbb{R}$. We say that $C \in \mathbb{R}$ is a cluster point of A iff $\forall \delta>0, \exists x \in A$ sit $x \neq c$ and $|x-c|<\delta$

A

Remark: A cluster pt. $\subset \in \mathbb{R}$ may or may not belong to A.
Examples:

- $A=\{1.2\}$ No cluster pt.

- $A=(0,1) \quad$ Any $c \in[0,1]$ is a cluster pe

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$ No cluster pt.
- $A=\mathbb{N}$ No cluster pt.

- $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ oNLY 1 cluster pt

$$
c=0
$$

Prop: $C \in \mathbb{R}$ is a cluster point of A
$\Longleftrightarrow \exists$ seq. $\left(a_{n}\right)$ in A st $a_{n} \neq C \quad \forall n \in \mathbb{N}$ and $\lim \left(a_{n}\right)=c$

Sketch of Proof : (\Rightarrow) Take $\delta_{n}:=\frac{1}{n}$, by def n. $\exists a_{n} \in A$ st
$a_{n} \neq c \quad$ and $\quad\left|a_{n}-c\right|<\delta_{n}=\frac{1}{n} \xrightarrow{\text { as } n+\infty} 0$

We now state the most important definition for this chapter.
Def n: Let $f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a function.

Suppose $C \in \mathbb{R}$ is a cluster point of A.
We say that " f converges to $L \in \mathbb{R}$ at c ", written

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { or } " f(x) \rightarrow L \text { as } x \rightarrow c "
$$

iff $\forall \varepsilon>0 . \exists \delta=\delta(\varepsilon)>0$ st.

$$
|f(x)-L|<\varepsilon . \forall x \in A \text { where } 0<|x-c|<\delta
$$

Example 1 : Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x):=x$ for all $x \in \mathbb{R}$.

$$
\lim _{x \rightarrow c} f(x)=c \quad \forall c \in \mathbb{R} .
$$

Pf: Any $\subset \in \mathbb{R}$ is a cluster pt. of $A=\mathbb{R}$.
Let $\varepsilon>0$ be fixed but arbitrary.
Choose $\delta>0$ st $\delta=\varepsilon$
THEN, $\forall x \in \mathbb{R}$, and $0<|x-c|<\delta$, we have

$$
|f(x)-c|=|x-c|<\delta=\varepsilon
$$

Remark: $\lim _{x \rightarrow C} f(x)$ may exists with f being defined at C.
Fig.) $f: A=(0,1) \rightarrow \mathbb{R} ; f(x):=x$

$$
\Rightarrow \quad \lim _{x \rightarrow 1} f(x)=1 \leftrightarrow A
$$

Example $2: \lim _{x \rightarrow c} x^{2}=c^{2}$
Pf: Fix $C \in \mathbb{R}$.
Let $\varepsilon>0$ be fixed but arbitrary.
Note: Suppose $|x-c|<1$, then

$$
|x| \leqslant|x-c|+|c|<1+|c|
$$

Choose $\delta:=\min \left\{1 \cdot \frac{\varepsilon}{2(1+2|c|)}\right\}$

THEN, $\forall x \in A=\mathbb{R}$ with $0<|x-c|<\delta$, we have

$$
\left|x^{2}-c^{2}\right|=|x+c| \cdot|x-c| \leqslant(1+2|c|) \delta<\varepsilon
$$

Example 3: $\quad \lim _{x \rightarrow c} \frac{1}{x}=\frac{1}{c} \quad$ where $c \neq 0$.
Considering $f: A=\mathbb{R},\{0\} \rightarrow \mathbb{R}, f(x):=\frac{1}{x}$
Note: Any $\subset \in \mathbb{R}$ is a cluster pt of A
Pf: Let's assume $C>0$.
Let $\varepsilon>0$ be fixed but arbitron.
Note: If $|x-c|<\frac{c}{2}$, then

$$
|x|>\frac{c}{2}>0
$$

Take $\delta:=\min \left\{\frac{c}{2}, \frac{\varepsilon c^{2}}{2}\right\}>0$.
Then, $\forall x \in A$ and $0<|x-c|<\delta$ we have

If $0<|x-c|<\delta$, then

$$
\begin{aligned}
& \left|\frac{1}{x}-\frac{1}{c}\right|=\frac{|x-c|}{|x c|} \\
& =\frac{1}{|x|} \frac{1}{|c|}|x-c|<\frac{2}{c^{2}} \cdot \delta \leqslant \varepsilon
\end{aligned}
$$

Need $|x|$ bold away from 0 .

$$
\left|\frac{1}{x}-\frac{1}{c}\right|=\frac{1}{|x|} \cdot \frac{1}{|c|} \cdot|x-c|<\frac{2}{c^{2}} \cdot s \leqslant \varepsilon
$$

Example: $\lim _{x \rightarrow 2} \frac{x^{3}-4}{x+1}=\frac{4}{3}$
$f: A:=\mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}$ $f(x):=\frac{x^{3}-4}{x+1}$

Pf: Let $\varepsilon>0$ be fixed but arbitiany.

Note: If $|x-2|<1$, then

$$
1<x<3
$$

Hence. $|x+1|>2>0$
and $\left|3 x^{2}+6 x+8\right| \leqslant 1000$.
Choose $\delta=\min \left\{1, \frac{3}{500} \varepsilon\right\}$.
THEN, $\forall x \in A$, and $0<|x-2|<\delta$.

$$
\begin{align*}
& \left|\frac{x^{3}-4}{x+1}-\frac{4}{3}\right|=\left|\frac{3 x^{3}-4 x-16}{3(x+1)}\right| \\
& \quad=\frac{\left|3 x^{2}+6 x+8\right|}{3|x+1|} \cdot|x-2| \\
& \quad<\frac{1000}{3 \cdot 2} \delta \leq \varepsilon
\end{align*}
$$

Have: $0<|x-2|<\delta$

$$
\begin{aligned}
& \left|\frac{x^{3}-4}{x+1}-\frac{4}{3}\right|=\left|\frac{3\left(x^{3}-4\right)-4(x+1)}{3(x+1)}\right| \\
& =\left|\frac{3 x^{3}-4 x-16}{3(x+1)}\right| \\
& =\left|\frac{(x-2)\left(3 x^{2}+6 x+8\right)}{3(x+1)}\right| \\
& =\frac{\left|3 x^{2}+6 x+8\right|}{3|x+1|} \cdot|x-2| \\
& \text { small }
\end{aligned}
$$

Note: $\quad|x-2|<1$

$$
\Rightarrow \quad 1<|x|<3
$$

So $|x+1|>2>0$.
and $13 x^{2}+6 x+81$
$\leqslant 3|x|^{2}+6|x|+8$
$\leq 3 \cdot 3^{2}+6 \cdot 3+8 \leq 1000$

Prop: $\lim _{x \rightarrow C} f(x)$, if exists, is unique. (Pf: Exeruise!)

Thu: "Sequential Criteria"

$$
\lim _{x \rightarrow c} f(x)=L \quad\left\langle\Rightarrow \forall \text { seq. } (x _ { n }) \text { in } A \text { s.t. } \left\{\begin{array}{l}
x_{n} \neq c \quad \forall n \in \mathbb{N} \\
\lim \left(x_{n}\right)=c
\end{array}\right.\right.
$$

we have $\lim \left(f\left(x_{0}\right)\right)=L$

Proof: " \Rightarrow " Let $\left(x_{n}\right)$ be a seq in A st. (*) holds
Let $\varepsilon>0$ be fixed but arbitrary.
Since $\lim _{x \rightarrow c} f(x)=L, \exists \delta=\delta(\varepsilon)>0$ sit

$$
|f(x)-L|<\varepsilon \quad \text { wherever } \begin{gathered}
x \in A \\
0<|x-c|<\delta
\end{gathered}
$$

Since ${ }^{(x)} \lim \left(x_{n}\right)=c$. for the $\delta>0$ above.

$$
\begin{aligned}
\exists K=K(\delta) \in \mathbb{N} \text { sit } \quad 0<\left(\frac{1)}{<}\left|x_{n}-c\right|<\delta \quad \forall n \geqslant K\right. \\
\Rightarrow \quad\left|f\left(x_{n}\right)-L\right|<\varepsilon \quad \forall n \geqslant K
\end{aligned}
$$

"く" Suppose NOT, ie $\exists \varepsilon_{0}>0$ at $\forall \delta>0$.

$$
\exists x_{\delta} \in A \text { s.t. } 0<\left|x_{\delta}-c\right|<\delta
$$

BUT: $\quad\left|f\left(x_{\rho}\right)-L\right| \geqslant \varepsilon_{0}$
Take $\delta=\frac{1}{n}$, then set $x_{n} \in A$ st.

$$
\begin{aligned}
& 0<\left|x_{n}-c\right|<\frac{1}{n} \quad \text { and } \quad\left|f\left(x_{n}\right)-L\right| \geqslant \varepsilon_{0} \quad \forall n \in \mathbb{N} \\
\Rightarrow & \lim \left(x_{n}\right)=c \quad \text { BuT } \quad \lim \left(f\left(x_{n}\right)\right) \neq L
\end{aligned}
$$

$$
x_{n} \neq C \quad \forall n \in \mathbb{N}
$$

In summary, we have
Setup: $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}, C:$ a cluster pt. of $A\binom{$ Note: not nee. }{ belong to $A}$

$$
\forall \varepsilon>0, \exists \delta=\delta(\varepsilon)>0 \text { st. }
$$

Def ${ }^{\text {! }: ~} \lim _{x \rightarrow c} f(x)=L \Leftrightarrow \quad|f(x)-L|<\varepsilon \quad \begin{gathered}\text { whenever } x \in A \text { and } \\ 0<|x-c|<\delta\end{gathered}$ $0<|x-c|<\delta$

Sequential Criteria

$$
\begin{array}{r}
\lim _{x \rightarrow C} f(x)=L \Leftrightarrow \text { seq. }\left(x_{n}\right) \text { in } A \text { st }\left\{\begin{array}{l}
x_{n} \neq c \quad \forall n \in \mathbb{N} \\
\lim \left(x_{n}\right)=c
\end{array}\right. \\
\text { we have } \lim \left(f\left(x_{n}\right)\right)=L \\
\text { limit of } \begin{array}{l}
\text { limit of seq. } \\
\text { of real numbers }
\end{array}
\end{array}
$$

Remark: This is helpful, in particular, to show that the limit $\lim _{x \rightarrow 6} f(x)$ DOES NOT EXIST.
Taking the negation of Sequential Criteria above, we get:
Cor 1: f DOES NOT \rightrightarrows seq. $\left(x_{n}\right)$ in A st $\left\{\begin{array}{l}x_{n} \neq c \quad \forall n \in \mathbb{N} \\ \lim \left(x_{n}\right)=c\end{array}\right.$ Converge to $L \Leftrightarrow \operatorname{BUT}\left(f\left(x_{n}\right)\right) \rightarrow L$ as $X \rightarrow C$
Cor 2: f "DIVERGES" $\Leftrightarrow \exists$ seq. $\left(x_{n}\right)$ in A s.t $\left\{\begin{array}{l}x_{n} \neq c \quad \forall n \in \mathbb{N} \\ \lim \left(x_{n}\right)=c\end{array}\right.$ as $x \rightarrow C \quad$ BUT $\left(f\left(x_{n}\right)\right)$ is divergent. $\left(\begin{array}{l}\text { ie } f \text { doEs NOT } \\ \text { Converge to } L \\ \text { as } x \rightarrow c\end{array} \quad \forall L \in \mathbb{R}\right.$.
"Divergence Criteria"

Proof of Cor. 2 : " $<="$ Easy.
$" \Rightarrow$ " Argue by contradiction. Assume f diverges at $x \rightarrow C$ but the Rit S. fails to hold.

$$
\text { i.e. } \forall \text { seq. }\left(x_{n}\right) \text { in } A \text { st. } \operatorname{nn}\left\{\begin{array}{l}
x_{n} \neq c \quad \forall n \in \mathbb{N} \\
\lim \left(x_{n}\right)=c
\end{array}\right.
$$

we have $\lim \left(f\left(x_{n}\right)\right)=L$ for some $L \in \mathbb{R}$
 which may depend on the sequence $\left(x_{n}\right)$
Claim: The limit L DOES NOT depend on $\left(x_{n}\right)$.
Pf of claim: Suppose (x_{n}), ($x_{n_{i}^{\prime}}$) satisfy (*), and

$$
\lim \left(f\left(x_{n}\right)\right)=L \neq L^{\prime}=\lim \left(f\left(x_{n}^{\prime}\right)\right)
$$

Consider the new sequence

$$
\left(y_{n}\right):=\left(x_{1}, x_{1}^{0}, x_{2}, x_{2}^{0}, x_{3}, x_{3}^{0}, \ldots\right)
$$

Satisfies (*), then by hypothesis

$$
\left(f\left(y_{n}\right)\right):=\left(f\left(x_{1}\right), f\left(x_{1}^{\prime}\right), f\left(x_{2}\right), f\left(x_{2}^{\prime}\right), \ldots \ldots\right)
$$

is convergent, hence $L=L^{\prime}$ -

By sequential contervic, $\lim _{x \rightarrow C} f(x)=L$ contradiction: \qquad -

We now loot at some examples where the limit of functions does not exist.

Example 1: $\lim _{x \rightarrow 0} \frac{1}{x}$ DOES NOT EXIST!

Pf: Take $\left(x_{n}\right):=\left(\frac{1}{n}\right)$.
Cleanly, $\lim \left(x_{n}\right)=0$, and

$$
A \rightarrow x_{n} \neq 0 \quad \forall n \in \mathbb{N}
$$

So (*) is satisfied.
BUT $\left(f\left(x_{n}\right)\right)=(n)$ is DIVERGENT!
$f: A=\mathbb{R} \mid\{0\} \rightarrow \mathbb{R}$

$$
f(x):=\frac{1}{x}
$$

So we are done according to the divergence criteria above.
[Exercise: Prove directly using $\varepsilon-\delta$ deft of limit.]
Example 2: $\lim _{x \rightarrow 0} \frac{x}{|x|}$ DOES NOT EXIST.

$$
\text { Pf: Take }\left(x_{n}\right):=\left(\frac{(-1)^{n}}{n}\right) \rightarrow 0
$$ satisfying (*), the image seq. $\left(f\left(x_{n}\right)\right)=\left((-1)^{n}\right)$ DIVERGENT!

$$
\begin{gathered}
f: A=\mathbb{R} \mid \int 01 \rightarrow \mathbb{R} \\
f(x):=\frac{x}{|x|}
\end{gathered}
$$

\qquad

Example 3: $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ DOES NOT EXIST!
butinant

Pf: Take $\left(x_{n}\right):=\left(\frac{1^{*} \pi}{n \pi}\right) \rightarrow 0$ BuT $\left(f\left(x_{n}\right)\right)=(0)$ Take $\left(x_{n}^{\prime}\right):=\left(\frac{1}{\frac{\pi}{2}+2 n \pi}\right) \rightarrow 0$ BuT $\left(f\left(x_{n}^{\prime}\right)\right)=(1)$
So, let $\left(y_{n}\right)=\left(x_{1}, x_{i}, x_{2}, x_{2}^{\prime}, x_{3}, x_{3}^{\prime}, \ldots\right)^{\pi^{0}} \rightarrow 0$

$$
f: A=\mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}
$$

$$
f(x)=\sin \frac{1}{x}
$$

But $\left(f\left(y_{n}\right)\right)=(0,1,0,1,0,1, \ldots)$ DIVERGENT!

